Absence of Gelation and Self-Similar Behavior for a Coagulation-Fragmentation Equation

نویسندگان

  • Philippe Laurençot
  • Henry van Roessel
چکیده

The dynamics of a coagulation-fragmentation equation with multiplicative coagulation kernel and critical singular fragmentation is studied. In contrast to the coagulation equation, it is proved that fragmentation prevents the occurrence of the gelation phenomenon and a mass-conserving solution is constructed. The large time behavior of this solution is shown to be described by a selfsimilar solution. In addition, the second moment is finite for positive times whatever its initial value. The proof relies on the Laplace transform which maps the original equation to a first-order nonlinear hyperbolic equation with a singular source term. A precise study of this equation is then performed with the method of characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelation and Mass Conservation in Coagulation-fragmentation Models

The occurrence of gelation and the existence of mass-conserving solutions to the continuous coagulation-fragmentation equation are investigated under various assumptions on the coagulation and fragmentation rates, thereby completing the already known results. A non-uniqueness result is also established and a connection to the modified coagulation model of Flory is also made.

متن کامل

Dust and self-similarity for the Smoluchowski coagulation equation

We establish the well-posedness of the Cauchy problem for the Smoluchowski coagulation equation in the homogeneous space L̇1 for a class of homogeneous coagulation rates of degree λ ∈ [0, 2). For any initial datum fin ∈ L̇1 we build a weak solution which conserves the mass when λ ≤ 1 and loses mass in finite time (gelation phenomena) when λ > 1. We then extend the existence result to a measure fr...

متن کامل

Convergence of a finite volume scheme for coagulation-fragmentation equations

This paper is devoted to the analysis of a numerical scheme for the coagulation and fragmentation equation. A time explicit finite volume scheme is developed, based on a conservative formulation of the equation. It is shown to converge under a stability condition on the time step, while a first order rate of convergence is established and an explicit error estimate is given. Finally, several nu...

متن کامل

On self-similarity and stationary problem for fragmentation and coagulation models

We prove the existence of a stationary solution of any given mass to the coagulationfragmentation equation without assuming a detailed balance condition, but assuming instead that aggregation dominates fragmentation for small particles while fragmentation predominates for large particles. We also show the existence of a self similar solution of any given mass to the coagulation equation and to ...

متن کامل

The nonlinear fragmentation equation

We study the kinetics of nonlinear irreversible fragmentation. Here fragmentation is induced by interactions/collisions between pairs of particles, and modelled by general classes of interaction kernels, and for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the ”non-vanishing mass flux ”criterion for the occurrence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2015