Absence of Gelation and Self-Similar Behavior for a Coagulation-Fragmentation Equation
نویسندگان
چکیده
The dynamics of a coagulation-fragmentation equation with multiplicative coagulation kernel and critical singular fragmentation is studied. In contrast to the coagulation equation, it is proved that fragmentation prevents the occurrence of the gelation phenomenon and a mass-conserving solution is constructed. The large time behavior of this solution is shown to be described by a selfsimilar solution. In addition, the second moment is finite for positive times whatever its initial value. The proof relies on the Laplace transform which maps the original equation to a first-order nonlinear hyperbolic equation with a singular source term. A precise study of this equation is then performed with the method of characteristics.
منابع مشابه
Gelation and Mass Conservation in Coagulation-fragmentation Models
The occurrence of gelation and the existence of mass-conserving solutions to the continuous coagulation-fragmentation equation are investigated under various assumptions on the coagulation and fragmentation rates, thereby completing the already known results. A non-uniqueness result is also established and a connection to the modified coagulation model of Flory is also made.
متن کاملDust and self-similarity for the Smoluchowski coagulation equation
We establish the well-posedness of the Cauchy problem for the Smoluchowski coagulation equation in the homogeneous space L̇1 for a class of homogeneous coagulation rates of degree λ ∈ [0, 2). For any initial datum fin ∈ L̇1 we build a weak solution which conserves the mass when λ ≤ 1 and loses mass in finite time (gelation phenomena) when λ > 1. We then extend the existence result to a measure fr...
متن کاملConvergence of a finite volume scheme for coagulation-fragmentation equations
This paper is devoted to the analysis of a numerical scheme for the coagulation and fragmentation equation. A time explicit finite volume scheme is developed, based on a conservative formulation of the equation. It is shown to converge under a stability condition on the time step, while a first order rate of convergence is established and an explicit error estimate is given. Finally, several nu...
متن کاملOn self-similarity and stationary problem for fragmentation and coagulation models
We prove the existence of a stationary solution of any given mass to the coagulationfragmentation equation without assuming a detailed balance condition, but assuming instead that aggregation dominates fragmentation for small particles while fragmentation predominates for large particles. We also show the existence of a self similar solution of any given mass to the coagulation equation and to ...
متن کاملThe nonlinear fragmentation equation
We study the kinetics of nonlinear irreversible fragmentation. Here fragmentation is induced by interactions/collisions between pairs of particles, and modelled by general classes of interaction kernels, and for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the ”non-vanishing mass flux ”criterion for the occurrence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2015